A hybrid smoothed extended finite element/level set method for modeling equilibrium shapes of nano-inhomogeneities
نویسندگان
چکیده
Interfacial energy plays an important role in equilibrium morphologies of nanosized microstructures of solid materials due to the high interface-to-volume ratio, and can no longer be neglected as it does in conventional mechanics analysis. The present work develops an effective numerical approach by means of a hybrid smoothed extended finite element/level set method to model nanoscale inhomogeneities with interfacial energy effect, in which the finite element mesh can be completely independent of the interface geometry. The Gurtin-Murdoch surface elasticity model is used to account for the interface stress effect and the Wachspress interpolants are used for the first time to construct the shape functions in the smoothed extended finite element method. Selected numerical results are presented to study the accuracy and efficiency of the proposed method as well as the equilibrium shapes of misfit particles in elastic solids. The presented results compare very well with those obtained from theoretical solutions and experimental observations, and the computational efficiency of the method is shown to be superior to that of its most advanced competitor.
منابع مشابه
Estimation of Fracture path in the Structures and the Influences of Non-singular term on crack propagation
In the present research, a fully Automatic crack propagation as one of the most complicated issues in fracture mechanics is studied whether there is an inclusion or no inclusion in the structures. In this study The Extended Finite Element Method (XFEM) is utilized because of several drawbacks in standard finite element method in crack propagation modeling. Estimated Crack paths are obtained by ...
متن کاملMeso-scale Modeling of Tension Analysis of Pure and Intra-ply Hybrid Woven Composites Using Finite Element Method
One of the key issues associated with using of composites in various applications is their tensile behavior. The tensile behavior of a composite material is strongly influenced by the properties of its constituents and their distribution. This paper focuses on gaining some insights into the tensile process of pure and hybrid woven composite reinforced with brittle and ductile yarns. For this pu...
متن کاملExtended Finite Element Method for Statics and Vibration Analyses on Cracked Bars and Beams
In this paper, the extended finite element method (XFEM) is employed to investigate the statics and vibration problems of cracked isotropic bars and beams. Three kinds of elements namely the standard, the blended and the enriched elements are utilized to discretize the structure and model cracks. Two techniques referred as the increase of the number of Gauss integration points and the rectangle...
متن کاملEvaluation of Fracture Parameters by Coupling the Edge-Based Smoothed Finite Element Method and the Scaled Boundary Finite Element Method
This paper presents a technique to evaluate the fracture parameters by combining the edge based smoothed finite element method (ESFEM) and the scaled boundary finite element method (SBFEM). A semi-analytical solution is sought in the region close to the vicinity of the crack tip using the SBFEM, whilst, the ESFEM is used for the rest of the domain. As both methods satisfy the partition of unity...
متن کامل3D Finite element modeling for Dynamic Behavior Evaluation of Marin Risers Due to VIV and Internal Flow
The complete 3D nonlinear dynamic problem of extensible, flexible risers conveying fluid is considered. For describing the dynamics of the system, the Newtonian derivation procedure is followed. The velocity field inside the pipe formulated using hydrostatic and Bernoulli equations. The hydrodynamic effects of external fluids are taken into consideration through the nonlinear drag forces in var...
متن کامل